Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.

Identifieur interne : 000C67 ( Main/Exploration ); précédent : 000C66; suivant : 000C68

Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.

Auteurs : Shigeaki Saitoh [Japon] ; Ayaka Mori [Japon] ; Lisa Uehara [Japon] ; Fumie Masuda [Japon] ; Saeko Soejima [Japon] ; Mitsuhiro Yanagida [Japon]

Source :

RBID : pubmed:25411338

Descripteurs français

English descriptors

Abstract

Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans.

DOI: 10.1091/mbc.E14-11-1503
PubMed: 25411338
PubMed Central: PMC4294683


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.</title>
<author>
<name sortKey="Saitoh, Shigeaki" sort="Saitoh, Shigeaki" uniqKey="Saitoh S" first="Shigeaki" last="Saitoh">Shigeaki Saitoh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan saitou_shigeaki@kurume-u.ac.jp myanagid@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864</wicri:regionArea>
<wicri:noRegion>Fukuoka 839-0864</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mori, Ayaka" sort="Mori, Ayaka" uniqKey="Mori A" first="Ayaka" last="Mori">Ayaka Mori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495</wicri:regionArea>
<wicri:noRegion>Okinawa 904-0495</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uehara, Lisa" sort="Uehara, Lisa" uniqKey="Uehara L" first="Lisa" last="Uehara">Lisa Uehara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495</wicri:regionArea>
<wicri:noRegion>Okinawa 904-0495</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Masuda, Fumie" sort="Masuda, Fumie" uniqKey="Masuda F" first="Fumie" last="Masuda">Fumie Masuda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864</wicri:regionArea>
<wicri:noRegion>Fukuoka 839-0864</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Soejima, Saeko" sort="Soejima, Saeko" uniqKey="Soejima S" first="Saeko" last="Soejima">Saeko Soejima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864</wicri:regionArea>
<wicri:noRegion>Fukuoka 839-0864</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yanagida, Mitsuhiro" sort="Yanagida, Mitsuhiro" uniqKey="Yanagida M" first="Mitsuhiro" last="Yanagida">Mitsuhiro Yanagida</name>
<affiliation wicri:level="1">
<nlm:affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan saitou_shigeaki@kurume-u.ac.jp myanagid@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495</wicri:regionArea>
<wicri:noRegion>Okinawa 904-0495</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25411338</idno>
<idno type="pmid">25411338</idno>
<idno type="doi">10.1091/mbc.E14-11-1503</idno>
<idno type="pmc">PMC4294683</idno>
<idno type="wicri:Area/Main/Corpus">000D57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D57</idno>
<idno type="wicri:Area/Main/Curation">000D57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D57</idno>
<idno type="wicri:Area/Main/Exploration">000D57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.</title>
<author>
<name sortKey="Saitoh, Shigeaki" sort="Saitoh, Shigeaki" uniqKey="Saitoh S" first="Shigeaki" last="Saitoh">Shigeaki Saitoh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan saitou_shigeaki@kurume-u.ac.jp myanagid@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864</wicri:regionArea>
<wicri:noRegion>Fukuoka 839-0864</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mori, Ayaka" sort="Mori, Ayaka" uniqKey="Mori A" first="Ayaka" last="Mori">Ayaka Mori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495</wicri:regionArea>
<wicri:noRegion>Okinawa 904-0495</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uehara, Lisa" sort="Uehara, Lisa" uniqKey="Uehara L" first="Lisa" last="Uehara">Lisa Uehara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495</wicri:regionArea>
<wicri:noRegion>Okinawa 904-0495</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Masuda, Fumie" sort="Masuda, Fumie" uniqKey="Masuda F" first="Fumie" last="Masuda">Fumie Masuda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864</wicri:regionArea>
<wicri:noRegion>Fukuoka 839-0864</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Soejima, Saeko" sort="Soejima, Saeko" uniqKey="Soejima S" first="Saeko" last="Soejima">Saeko Soejima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864</wicri:regionArea>
<wicri:noRegion>Fukuoka 839-0864</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yanagida, Mitsuhiro" sort="Yanagida, Mitsuhiro" uniqKey="Yanagida M" first="Mitsuhiro" last="Yanagida">Mitsuhiro Yanagida</name>
<affiliation wicri:level="1">
<nlm:affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan saitou_shigeaki@kurume-u.ac.jp myanagid@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495</wicri:regionArea>
<wicri:noRegion>Okinawa 904-0495</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus (drug effects)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (genetics)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (metabolism)</term>
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Glucose (metabolism)</term>
<term>Glucose (pharmacokinetics)</term>
<term>Glucose (pharmacology)</term>
<term>Glucose Transport Proteins, Facilitative (genetics)</term>
<term>Glucose Transport Proteins, Facilitative (metabolism)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>HSP70 Heat-Shock Proteins (genetics)</term>
<term>HSP70 Heat-Shock Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Immunoblotting (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Monosaccharide Transport Proteins (genetics)</term>
<term>Monosaccharide Transport Proteins (metabolism)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Phosphoprotein Phosphatases (genetics)</term>
<term>Phosphoprotein Phosphatases (metabolism)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Time-Lapse Imaging (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (génétique)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Glucose (pharmacocinétique)</term>
<term>Glucose (pharmacologie)</term>
<term>Humains (MeSH)</term>
<term>Imagerie accélérée (méthodes)</term>
<term>Immunotransfert (MeSH)</term>
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Phosphoprotein Phosphatases (génétique)</term>
<term>Phosphoprotein Phosphatases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Protéines du choc thermique HSP70 (génétique)</term>
<term>Protéines du choc thermique HSP70 (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transport nucléaire actif (effets des médicaments et des substances chimiques)</term>
<term>Transporteurs de glucose par diffusion facilitée (génétique)</term>
<term>Transporteurs de glucose par diffusion facilitée (métabolisme)</term>
<term>Transporteurs de monosaccharides (génétique)</term>
<term>Transporteurs de monosaccharides (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Cell Cycle Proteins</term>
<term>Glucose Transport Proteins, Facilitative</term>
<term>Green Fluorescent Proteins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Monosaccharide Transport Proteins</term>
<term>Multiprotein Complexes</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein Isoforms</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transport nucléaire actif</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Complexes multiprotéiques</term>
<term>Isoformes de protéines</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Protéines du choc thermique HSP70</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines à fluorescence verte</term>
<term>Schizosaccharomyces</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transporteurs de glucose par diffusion facilitée</term>
<term>Transporteurs de monosaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Cell Cycle Proteins</term>
<term>Cell Nucleus</term>
<term>Glucose</term>
<term>Glucose Transport Proteins, Facilitative</term>
<term>Green Fluorescent Proteins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Monosaccharide Transport Proteins</term>
<term>Multiprotein Complexes</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein Isoforms</term>
<term>Schizosaccharomyces</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Time-Lapse Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Complexes multiprotéiques</term>
<term>Glucose</term>
<term>Isoformes de protéines</term>
<term>Noyau de la cellule</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Protéines du choc thermique HSP70</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines à fluorescence verte</term>
<term>Schizosaccharomyces</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transporteurs de glucose par diffusion facilitée</term>
<term>Transporteurs de monosaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Imagerie accélérée</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Immunoblotting</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Microscopy, Fluorescence</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Humains</term>
<term>Immunotransfert</term>
<term>Microscopie de fluorescence</term>
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25411338</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.</ArticleTitle>
<Pagination>
<MedlinePgn>373-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E14-11-1503</ELocationID>
<Abstract>
<AbstractText>Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans. </AbstractText>
<CopyrightInformation>© 2015 Saitoh et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saitoh</LastName>
<ForeName>Shigeaki</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan saitou_shigeaki@kurume-u.ac.jp myanagid@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mori</LastName>
<ForeName>Ayaka</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Uehara</LastName>
<ForeName>Lisa</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Masuda</LastName>
<ForeName>Fumie</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soejima</LastName>
<ForeName>Saeko</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yanagida</LastName>
<ForeName>Mitsuhiro</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Okinawa Institute Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan saitou_shigeaki@kurume-u.ac.jp myanagid@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000601636">Ght5 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051246">Glucose Transport Proteins, Facilitative</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018840">HSP70 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009004">Monosaccharide Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C111935">PSS1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C103137">Sds23 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.17</RegistryNumber>
<NameOfSubstance UI="D054737">Calcium-Calmodulin-Dependent Protein Kinase Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054737" MajorTopicYN="N">Calcium-Calmodulin-Dependent Protein Kinase Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051246" MajorTopicYN="N">Glucose Transport Proteins, Facilitative</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018840" MajorTopicYN="N">HSP70 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015151" MajorTopicYN="N">Immunoblotting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009004" MajorTopicYN="N">Monosaccharide Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059008" MajorTopicYN="N">Time-Lapse Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25411338</ArticleId>
<ArticleId IdType="pii">mbc.E14-11-1503</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E14-11-1503</ArticleId>
<ArticleId IdType="pmc">PMC4294683</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Sci. 1996 Sep;109 ( Pt 9):2331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8886983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Dec 2;15(23):6629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8978689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Mar 15;13(3):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9090050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Aug;8(8):1603-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9285828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1997 Aug;21(1):85-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9299703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1997 Oct;110 ( Pt 20):2557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9372444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Feb 3;37(5):1322-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9477959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Apr 7;245(1):246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9535817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Feb;261(1):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10071224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 May;10(5):1495-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 27;274(35):24721-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Sep 30;15(13):1419-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10509024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Dec;6(12):1137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2006 Apr;31(4):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 1;281(48):36993-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Dec;5(12):1980-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2007 May;56(5):1403-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 May;12(5):677-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiology (Bethesda). 2007 Aug;22:234-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(10):R217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 May 1;122(Pt 9):1418-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 11;459(7248):857-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 11;459(7248):852-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2009 May;14(5):539-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Dec;34(12):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jun;87(2):715-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20396879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Jun;28(6):617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20473289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Apr;278(8):1299-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21306563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Jun 24;145(7):1116-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21703453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Dec 27;366(1584):3508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):410-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4506-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2014;4:130127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2014 Aug 1;588(15):2373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24815688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Apr;182(8):2153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10735857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2000 May;23(3):237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10863940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 21;415(6874):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11859360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2002 May;282(5):E1008-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Sep;22(17):6247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2002 Dec;2(4):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2003;43(6):473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2004 Feb;53(2):330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2004 Feb;447(5):480-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2003 Jul 10;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12854975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Sep 6;229(4717):941-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3839598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 Sep 12;233(4769):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3526554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1989 Jun;15(6):457-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2673558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Mar 15;290 ( Pt 3):701-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8457197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1993 Mar;4(3):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Sep;175(17):5520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8366037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Sep 15;294 ( Pt 3):753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8379930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Feb;176(4):953-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 12;269(32):20482-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8051147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 17;14(14):3325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Apr;16(1):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Saitoh, Shigeaki" sort="Saitoh, Shigeaki" uniqKey="Saitoh S" first="Shigeaki" last="Saitoh">Shigeaki Saitoh</name>
</noRegion>
<name sortKey="Masuda, Fumie" sort="Masuda, Fumie" uniqKey="Masuda F" first="Fumie" last="Masuda">Fumie Masuda</name>
<name sortKey="Mori, Ayaka" sort="Mori, Ayaka" uniqKey="Mori A" first="Ayaka" last="Mori">Ayaka Mori</name>
<name sortKey="Soejima, Saeko" sort="Soejima, Saeko" uniqKey="Soejima S" first="Saeko" last="Soejima">Saeko Soejima</name>
<name sortKey="Uehara, Lisa" sort="Uehara, Lisa" uniqKey="Uehara L" first="Lisa" last="Uehara">Lisa Uehara</name>
<name sortKey="Yanagida, Mitsuhiro" sort="Yanagida, Mitsuhiro" uniqKey="Yanagida M" first="Mitsuhiro" last="Yanagida">Mitsuhiro Yanagida</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25411338
   |texte=   Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25411338" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020